
A Cluster-Based QoS Testbed for Multimedia

Communications

Hermann HELLWAGNER

Department of Information Technology, University Klagenfurt

9020 Klagenfurt, Austria

and

Erich KARGL�

Knapp Systemintegration GmbH

8700 Leoben, Austria

Abstract

This paper presents an inexpensive cluster-based QoS

networking testbed that can be employed to \emulate"

di�erent networks for multimedia communication ex-

periments. Such a network can be built using standard

PC and Ethernet hardware and open-source software

components, e.g., IP routing and traÆc control avail-

able in recent Linux kernels as well as a Di�erentiated

Services package built atop these building blocks. The

testbed can
exibly be con�gured to model various

link bandwidths as well as IP routers capable of clas-

sifying, queuing (with various disciplines), forward-

ing and/or dropping packets and shaping traÆc. The

QoS components and facilities of the testbed are in-

troduced and initial performance analysis experiments

and results are reported. A simple video streaming ap-

plication under QoS control is presented to show the

usefulness of the testbed.

Keywords: multimedia communications, quality of

service, QoS, networking testbed, routing, Linux

1 Introduction

The amount of \multimedia" information available

in distributed environments like the Internet or be-

ing used in broadcasting, telecooperation, or inter-

active networked environments is growing rapidly.

Multimedia information like audio and video (A/V)

streams, graphical animations, virtual reality experi-

ences, or executable software components delivered

over packet networks will become pervasive in the

years to come. Applications in entertainment, edu-

cation, e-commerce, information services, cooperative

environments and many other areas are manifold and

are expected to have a major impact on our everyday

lives.

Multimedia data, in particular A/V streams, pose

considerable requirements on all techniques and (hard-

�Work was performed while the author was with the Univer-

sity Klagenfurt.

ware and software) components involved in capturing,

coding, storing, searching, delivering, decoding, and

presenting the data in an appropriate manner. Trans-

port and presentation of A/V data need not only be

correct, but also timely; i.e., real-time playout require-

ments must be met, despite potential impediments

in the network like bursty traÆc characteristics, low-

bandwidth or/and lossy links or congestion along the

delivery path.

As a consequence, providing quality of service (QoS)

in packet networks has become a vivid research and

development area in recent years. Several Internet

QoS frameworks and protocols have been developed

and suggested for standardization. Techniques include

Integrated Services (IntServ) [4, 9] and the Resource

Reservation Protocol (RSVP) [7, 11, 18], the Dif-

ferentiated Services (Di�Serv) framework [3, 8], fast

packet-forwarding schemes like Multiprotocol Label

Switching (MPLS) [16, 10], and resulting Constraint-

Based Routing and TraÆc Engineering mechanisms

[17].

Currently, QoS support is, or is becoming, widely

available in newer \enterprise" network components

only, predominantly routers [14]. Access to these de-

vices would be desirable for educational purposes, to

provide students with hands-on experience with recent

Internet QoS concepts and con�gurations. Moreover,

experimental research into e.g. multimedia data deliv-

ery under QoS control would ideally be performed on a

real-world QoS-capable network. In practice, though,

such devices or network testbeds are typically not ac-

cessible for a small university department.

In order to address this de�ciency, we set up and

speci�cally con�gured a cluster of Linux machines to

serve as a QoS network testbed for A/V data delivery.

The cluster comprises A/V streaming server and client

machines, several Linux routers, and a QoS-capable

Ethernet switch. The routers implement QoS facili-

ties using the network traÆc control mechanisms of

recent Linux kernels [1, 2, 13]. The routers can
exi-

bly be con�gured to implement various QoS policies,

based on di�erent packet classi�cation, queuing, for-

warding, and dropping schemes. TraÆc can also be

shaped to speci�c rates, in order to \emulate" di�er-

ent bandwidths available to A/V streams across the

Internet.

The con�guration and components of, and initial

experiences with, this cluster-based QoS testbed are

described in this paper. Section 2 outlines the basic

con�guration, while Section 3 discusses the compo-

nents and QoS facilities in more detail. Section 4 gives

preliminary performance results; Section 5 presents a

simple video transfer experiment under QoS control.

Related work is addressed in Section 6 and conclusions

are given in Section 7.

2 Testbed Con�guration

An example con�guration of the QoS network testbed

is depicted in Figure 1. The con�guration can be

changed or extended easily, as required for speci�c ex-

periments.

The network shown comprises a single server and a

single client machine, both of which are simple Linux

PCs; a QoS-capable Summit4 Gigabit and Fast Ether-

net switch by Extreme Networks, Inc.; and a couple of

Linux Routers (LRs), each of which is equipped with

multiple 100 Mbps Ethernet interfaces and IP routing

and traÆc control software [1, 13]. The LRs can thus

be connected in a point-to-point fashion and the trans-

fer rates among them can be controlled, to \emulate"

networks with di�erent numbers of hops, di�erent link

bandwidths along the server{client path, and alterna-

tive paths.

A Windows NT-based PC denoted as management

station (MS) allows to con�gure and monitor the Sum-

mit4 switch. Furthermore, this machine and an addi-

tional Linux-based lab PC connected to the switch, are

used to inject traÆc into the network that competes

with the server{client data stream for link bandwidth.

All machines are o�-the-shelf, low-cost PCs equipped

with 450 MHz Pentium II processors.

Notice that the client machine and LR2, LR3 and

LR4 reside in subnetworks that can only be reached

via LR1. The other machines have standard class-B IP

addresses and are linked into the university network

via the Summit4 switch.

3 QoS Components and

Facilities

The basic QoS components in the network are the

Extreme Networks Summit4 switch and the Linux

routers that implement traÆc control.

Summit4

The Summit4 is a Gigabit Ethernet (6 ports) and Fast

Ethernet (16 auto-negotiating ports) switch, support-

ing most of the features one can expect from a state-

of-the-art switch. Examples include switching and IP

xxx.yyy.zzz.61

Management Station

xxx.yyy.zzz.60

xxx.yyy.zzz.62

Server

Summit4 Switch

xxx.yyy.zzz.201

Lab PC

Linux Router 1

Linux Router 3

192.168.2.1

192.168.3.2

192.168.2.2

Linux Router 2

192.168.4.1

192.168.3.1

xxx.yyy.zzz.63

Linux Router 4

192.168.4.2
192.168.5.2

192.168.5.1

Hub

Client

192.168.5.3

1000 Mbps 100 Mbps

Figure 1: Example con�guration of the QoS testbed

routing, support of a wide range of standardized pro-

tocols, load sharing, de�nition of VLANs, and con-

venient con�guration and management software. In

addition, the Summit4 has interesting provisions for

QoS [12] that make it well suited for our testbed.

QoS mechanisms in the Summit4 are based on QoS

pro�les and traÆc classi�cation. A QoS pro�le con-

sists of the name of the pro�le, a minimum and a max-

imum bandwidth, and a priority. The minimum and

maximum values are percentages of the available link

bandwidth (i.e., 100 or 1000 Mbps). Thus, the data

transfer rate provided can be adjusted in increments

of 1 Mbps on a 100 Mbps port, for instance. Dur-

ing data transfer, the switch tries to assure the min-

imum bandwidth and limits the traÆc to the given

maximum. The priority of the pro�le (low, normal,

medium, or high) corresponds to one of the four sep-

arate hardware queues which are available for every

port on the Summit4.

TraÆc can be classi�ed according to a number of cri-

teria, including IP source and destination addresses,

TCP and UDP source and destination ports, as well

as packet priority (IEEE 802.1p), physical source port,

MAC addresses and VLAN names. For our purposes,

IP information-based classi�cation and QoS mecha-

nisms are the most important. TraÆc categories de-

�ned using these criteria are �nally mapped to QoS

pro�les.

The following simple example illustrates QoS pro-

�le speci�cation and IP address-based traÆc classi�-

cation. The commands modify the QoS pro�le QP3 of

a given (1000 Mbps) port in such a way that the min-

imum bandwidth equals 1% and the maximum band-

width 2% of the link bandwidth and the priority be-

comes medium. Furthermore, traÆc originating from

the IP address xxx.yyy.zzz.61 (the MS in our testbed)

is shaped according to pro�le QP3, thus restricted to

20 Mbps:

config qosprofile QP3 minbw 1% maxbw 2%

priority medium

config ipqos add UDP xxx.yyy.zzz.61 / 32 QP3

config ipqos add TCP xxx.yyy.zzz.61 / 32 QP3

config ipqos add OTH xxx.yyy.zzz.61 / 32 QP3

Linux Routers

Recent Linux kernels and additional user-space pro-

grams provide IP routing, network traÆc control, and

Di�Serv facilities. The LRs in our testbed run kernel

version 2.2.14 and the iproute programs provided by

[13]. A major challenge in employing this software is

that its documentation is still preliminary and incom-

plete. A more complete picture and documentation of

the Linux network traÆc control and QoS software is

given by [1, 2]. The source code and con�guration in-

formation of a prototype Di�Serv package built atop

the traÆc control code, are available there as well.

Linux network traÆc control operates on the output

side of the path which network packets take through

a Linux node (router), i.e., at the point where pack-

ets are queued on the output interface. Among other

things, traÆc control can decide whether packets are

queued or dropped, can reorder packets according to

their priorities or delay them to limit the rate of the

outgoing traÆc.

The Linux QoS model given by this traÆc control

code consists of queuing disciplines, classes, and �l-

ters. Each network device has a queuing discipline

associated with it. The queuing discipline is the fun-

damental QoS concept under Linux because it gen-

erally controls how packets enqueued on the device

are treated, e.g., limited to a speci�ed maximum data

rate using a token bucket �lter (TBF) or simply sent

in FIFO order.

A queuing discipline may contain one or more

classes. Each class facilitates di�erent treatment for

the data
ow; for instance, one class might be given

priority over the others, another class could limit the

data transfer rate to 5 Mbps. Classes in turn may

make use of queuing disciplines to take care of storing

the packets in the output queues; see [1, 2] and the

example given below.

The building blocks that di�erentiate traÆc into

classes are called �lters. Filters can be combined arbi-

trarily with queuing disciplines and classes; multiple

�lters may map traÆc to the same class.

When QoS is based on IP information, as in our

testbed, �lters are usually supported by rules that

map traÆc e.g. with given IP source and destina-

tion addresses to so-called \realms". These are fur-

ther mapped to classes by the �lters, as shown in the

example below.

The example illustrates how the entire traf-

�c from/to the server of the testbed (node

xxx.yyy.zzz.62) and the additional lab PC (node

xxx.yyy.zzz.201) traversing the network interface eth2

(address 192.168.3.1) of LR1 is limited to 128 kbps:

Queuing discipline (QD) 1 with CBQ

tc qdisc add dev eth2 root handle 1:

cbq bandwidth 100Mbit

Class 1 associated with QD 1

tc class add dev eth2 parent 1:0 classid 1:1

cbq bandwidth 100Mbit rate 100Mbit

Class 5 with rate 128 kbps

tc class add dev eth2 parent 1:1 classid 1:5

cbq bandwidth 100Mbit rate 128kbit

New QD used by class 5 with 128-kbps TBF

tc qdisc add dev eth2 parent 1:5

tbf rate 128kbit buffer 10Kb/8 limit 15Kb

Filter to map traffic 'realm' 1 to class 5

tc filter add dev eth2 parent 1:0 protocol ip

prio 10 route to 1 classid 1:5

IP rules to map traffic to 'realm' 1

ip rule add from xxx.yyy.zzz.62/32 realms 1/1

ip rule add to xxx.yyy.zzz.62/32 realms 1/1

ip rule add from xxx.yyy.zzz.201/32 realms 1/1

ip rule add to xxx.yyy.zzz.201/32 realms 1/1

4 Performance

A number of performance experiments were performed

to measure the raw performance, the QoS overhead,

and the eÆcacy of the QoS mechanisms.

The raw performance was assessed using a mi-

crobenchmark that
oods packets over a TCP con-

nection from the server to the client. Throughput is

measured using a one-way version of this program,

while round-trip delay is measured with a ping-pong

variant of the program; i.e., the server waits for the

reply packet from the client before sending the next

one.

Throughput

Figure 2 shows the throughput results of a TCP con-

nection along the path server{Summit4{LR1{LR3{

client, under di�erent traÆc and QoS conditions.

The curve 'QoS mechanisms' denotes the exper-

iment with QoS mechanisms being active in the

LRs and without competing traÆc. Throughput of

the server{client data stream achieves up to about

79 Mbps, which is remarkable for software routing

on a (slightly dated) PC and packets smaller than

1 kByte. The sawtooth shape of this curve (as well

as of the other curves) is attributed to TCP bu�er-

ing e�ects; with the TCP NODELAY option, the curve

becomes smoother, but achieves a maximum through-

put of about 70 Mbps only.

25

30

35

40

45

50

55

60

65

70

75

80

0 200 400 600 800 1000 1200

T
hr

ou
gh

pu
t [

M
bp

s]

Packet size [bytes]

Peak throughput of server-client stream over TCP at various packet sizes

QoS mechanisms
competing traffic, QoS

netperf, comp. traffic, QoS
competing traffic, no QoS

Figure 2: Throughput of server{client stream over

TCP, without/with QoS mechanisms in the LRs en-

abled and without/with competing traÆc

The speci�c QoS mechanisms used in these experi-

ments comprise TBFs in LR1 and in LR3 that shape

the competing traÆc (if existing) down to 1 Mbps.

The throughput curves without the QoS mechanisms

being enabled in the LRs are almost identical to those

with QoS; the former are therefore not shown in the

�gure. We determined the QoS overhead in these ex-

periments to be less than 1%.

The curve 'competing traÆc, no QoS' shows how

the throughput on the server{client path degrades

when other traÆc emerges on the network. In this

case, 20 Mbps additional traÆc
ows along the path

MS{Summit4{LR1{LR3{client. This traÆc is gener-

ated by a large �le transfer from the MS to the client

and is restricted to a rate of 20 Mbps by the Summit4

switch; see the Summit4 example in Section 3. The

�gure reveals that the server{client data stream is de-

graded by roughly 20 Mbps if the QoS provisions in

the LRs are inactive.

The picture changes when the QoS mechanisms in

LR1 and LR3 (the 1 Mbps TBFs for the compet-

ing traÆc) are enabled. The results are depicted by

the curve 'competing traÆc, QoS' in Figure 2. The

throughput on the server{client path is raised close to

the original level.

For comparison purposes, we ran the well-known

netperf benchmark. With competing traÆc and

QoS enabled, throughput achieved a peak of about

56 Mbps, as also shown in Figure 2. The di�erences

to our results are primarily attributed to the di�erent

benchmarking approaches; netperf does more exten-

sive measurements, including overheads that our mi-

crobenchmark does not consider.

Delays

We have performed a similar series of experiments to

assess the round-trip delays as well as the connection

setup and teardown delays. The results con�rm the

eÆcacy of the traÆc control (QoS) software mech-

0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800 1000 1200

R
ou

nd
-t

rip
 d

el
ay

 [u
se

c]

Packet size [bytes]

Round-trip delay of server-client stream over TCP at various packet sizes

QoS mechanisms
competing traffic, QoS

competing traffic, no QoS

Figure 3: Round-trip delay of server{client stream

over TCP, without/with QoS mechanisms in the LRs

enabled and without/with competing traÆc

anisms, similar to the throughput results reported

above.

As an example, Figure 3 shows the round-trip delay

results corresponding to the above experiments. In

rare cases (not reproducible in a deterministic way),

extreme delays occurred in the competing-traÆc, no-

QoS scenario, as depicted in the �gure; these anoma-

lies were not observed with QoS mechanisms in place.

5 Video Streaming Experiment

The usefulness of the QoS network testbed for multi-

media communication is demonstrated in the following

experiment.

Experimental Setup

We use the MPEG video/audio player described in [6]

and available from [5] to stream video data from the

server to the client. Although this player is rather

dated (it uses MPEG-1 video still, for example), it is

useful for QoS experiments since the video server and

the audio server can be located on di�erent machines

and deliver their data over di�erent connections to the

client. Thus, QoS control can be selectively applied

to the A and V streams, with potentially interesting

results.

The experiment reported here focuses on streaming

an MPEG-1 video from the server to the client via

LR1 and LR3. A small video, with 128x96 resolution,

an average of 586 bytes/frame, and a rate of 141 kbps

is used (about 6 minutes play time); the default frame

sequence is IBBPBBPBBPBB.

The video stream may be impeded by competing

traÆc (a large �le transfer, i.e. FTP)
owing from the

lab PC to LR3, thus taking the same route across

LR1. In addition, both streams may be subject to a

bandwidth limitation imposed by LR1 and their QoS

may be controlled by LR1.

As described in detail in [6], the video player uses a

sophisticated software feedback mechanism to smooth

the presentation of the video. The user may specify a

desired display frame rate, which is 30 fps by default.

If the network between server and client (player) can-

not provide enough e�ective bandwidth to support the

desired display frame rate, frames will arrive too late

and will have to be dropped by the player. The client

feeds back this information (i.e., the QoS delivered by

the network and observed by the player) to the server.

The video server may then \intelligently" drop ex-

cess frames at the source to adapt the stream to the

network QoS. That is, the server does not even re-

trieve excess frames from storage and tries to space

dropped frames evenly throughout the video stream.

For instance, every other B frame could be skipped if

the delivered network QoS is close to the QoS desired

by the user (the display frame rate). If the observed

QoS is far below the desired QoS, the player may (lin-

early) decrease the display frame rate and feed back

its updated requirements (and the observed network

QoS) to the server.

This technique iteratively adjusts the display frame

rate to the constraint imposed by the e�ective net-

work bandwidth, while maintaining a smooth playout

of the video. Random frame dropping at the bottle-

neck in the video delivery pipeline is thus avoided.

The feedback mechanism however is slightly conser-

vative in that it does not fully exploit the e�ective

network bandwidth (in equilibrium).

We performed a number of video streaming exper-

iments without and with competing traÆc (FTP). A

fundamental bandwidth limitation of 128 kbps was im-

posed on the link LR1{LR3 by a TBF in LR1; see the

Linux Router example in Section 3. Di�erent scenar-

ios were obtained by varying the bandwidths granted

to the competing
ows on this 128 kbps link. The

default feedback interval of 2000 ms was used for the

server{player interaction.

Results

The results di�er widely in terms of perceptual quality

of the video presentations. For example, the video is

played out at the client with acceptable quality if the

full 128 kbps are available to the video stream. If

competing traÆc from the lab PC to LR3 is injected

that consumes part of the 128 kbps, video presentation

quality degrades signi�cantly, down to a few frames

per second.

To assess the results in quantitative terms, the ad-

justed display frame rate (resulting from the client-

server feedback mechanism) is used as a metric. Ta-

ble 1 shows some of the results. Each adjusted display

frame rate value shown in the table represents the me-

dian of �ve video presentations.

If the full 128 kbps bandwidth is available to the

141 kbps video stream, the display frame rate is ad-

justed to 19.5 fps. This is acceptable in terms of vi-

sual quality but seems to leave some of the link band-

Table 1: Adjusted display frame rate for video stream

over 128 kbps link (LR1{LR3), without/with compet-

ing traÆc (FTP)

Available bandwidth,

traÆc classes in LR1 Video traÆc Video and

(video : FTP) only FTP traÆc

128 kbps (no QoS) 19.5 fps 3.5 fps

28 : 100 kbps { 3 fps

64 : 64 kbps { 7 fps

100 : 28 kbps { 13.5 fps

width unused. In fact, the average e�ective bandwidth

consumed by the video stream in this case is about

116 kbps only; the resulting frame pattern is IB-PB-

PB-PB-.

When the competing FTP traÆc emerges on the

unregulated 128 kbps link, the display frame rate de-

creases to a �nal 3.5 fps, due to the (conservative)

feedback technique. The FTP traÆc acquires as much

as 90 kbps bandwidth, leaving the video only about

38 kbps; almost all non-I frames are skipped in the

video stream.

Disabling the client{server software feedback does

not improve the situation, since most of the frames

arrive too late and have to be dropped by the video de-

coder or the display controller; the frame rate severely

degrades to <1 fps.

In order to enhance the visual quality of the video

session, the QoS mechanisms (traÆc control) in LR1

were employed to guarantee bandwidth for the video

stream. The results are shown in the last two rows

of Table 1 where the two data streams were sepa-

rated into di�erent traÆc classes. With a guaranteed

64 kbps and 100 kbps bandwidth, the video plays out

at an adjusted frame rate of 7 fps and 13.5 fps, re-

spectively. The second row con�rms the result of the

unregulated, congested 128 kbps link case above.

6 Related Work

The Drexel University Network Testbed (DNT) [14] is

most closely related to the QoS testbed presented in

this paper, both in terms of its scale, motivation, and

the tools used. DNT may also be used for educational

purposes and serve as a vehicle for inexpensive and

quick experiments with various real-world network-

ing scenarios, including e.g. satellite-based IP com-

munication (which requires to \emulate" long packet

transmission delays). Whereas DNT uses the more

complete Di�Serv prototype of [1, 2], our testbed also

includes a QoS-capable Ethernet switch, providing for

higher networking performance if required as well as

the opportunity for students to get hands-on experi-

ence with a modern QoS-con�gurable network device.

On a much larger scale, the QBone [15] is a network-

ing testbed for Internet2 QoS technology, with an ini-

tial focus on the Di�Serv architecture. While QBone

and our testbed do not have much in common, QBone

tools like e.g. traÆc generators (if publicly available)

could be adopted to enrich our infrastructure.

7 Conclusions

We have described a simple, but versatile cluster-

based QoS networking testbed that can be employed

to \emulate" di�erent networks for multimedia com-

munication experiments. The network was built using

standard PC and Ethernet hardware and open-source

software components, i.e., IP routing and traÆc con-

trol available in recent Linux kernels and provided as

separate packages. The testbed can be
exibly con-

�gured to model various link bandwidths as well as

IP routers capable of classifying, queuing (with var-

ious disciplines), forwarding and/or dropping pack-

ets and shaping traÆc. We have performed initial

performance analysis experiments and results for the

testbed and demonstrated its usefulness in a simple

video streaming application.

We plan to use the testbed in a project on quality-

adaptive video transfer over heterogeneous networks,

where the video
ow is subject to adaptation by net-

work nodes (routers), depending e.g. on the band-

width available on an outbound link or the current

load on the router. Video adaptation in this sense

may mean that low-priority enhancement layers of a

layer-encoded video may be dropped by the routers,

whereas the base layer needs to be delivered with high

quality. The QoS mechanisms and versatility of such

a testbed will be important for closely modeling real-

world multimedia networking scenarios.

References

[1] W. Almesberger. Linux Network Traf-

�c Control { Implementation Overview.

Technical report, EPFL ICA, April 1999.

http://icawww1.ep
.ch/linux-di�serv/.

[2] W. Almesberger, J. H. Salim, and A. Kuznetsov.

Di�erentiated Services on Linux. Tech-

nical report, EPFL ICA, June 1999.

http://icawww1.ep
.ch/linux-di�serv/.

[3] S. Blake, D. Black, M. Carlson, E. Davies,

Z. Wang, and W. Weiss. An Architecture for Dif-

ferentiated Services (RFC 2475), December 1998.

[4] R. Braden, D. Clark, and S. Shenker. Integrated

Services in the Internet Architecture (RFC 1633),

June 1994.

[5] S. Cen. Internet-Based Distributed Real-

Time MPEG Video Audio Player Version

2.0. Distributed Systems Research Group,

Dept. of Computer Science and Engineer-

ing, Oregon Graduate Institute of Sci-

ence and Technology, Portland, Oregon.

http://www.cse.ogi.edu/DISC/projects/synthetix/

Player/, June 1998.

[6] S. Cen, C. Pu, R. Staehli, C. Cowan, and

J. Walpole. A Distributed Real-Time MPEG

Video Audio Player. In Proceedings 5th Int'l.

Workshop on Network and Operating System

Support for Digital Audio and Video (NOSS-

DAV'95)), November 1995.

[7] R. Braden (ed.), L. Zhang, S. Berson, S. Her-

zog, and S. Jamin. Resource ReSerVation Proto-

col (RSVP) { Version 1 Functional Speci�cation

(RFC 2205), September 1997.

[8] IETF Di�Serv Working Group. Dif-

ferentiated Services (di�serv) Charter.

http://www.ietf.org/html.charters/di�serv-

charter.html, 2001.

[9] IETF IntServ Working Group. In-

tegrated Services (intserv) Charter.

http://www.ietf.org/html.charters/intserv-

charter.html, 2000.

[10] IETF MPLS Working Group. Multipro-

tocol Label Switching (mpls) Charter.

http://www.ietf.org/html.charters/mpls-

charter.html, 2001.

[11] IETF RSVP Working Group. Resource

Reservation Setup Protocol (rsvp) Char-

ter. http://www.ietf.org/html.charters/rsvp-

charter.html, 2001.

[12] Extreme Networks Inc. ExtremeWare Soft-

ware User Guide. Software Version 6.1.

http://www.extremenetworks.com/support/doc-

umentation/ExtremeWare6 1.zip, April 2000.

[13] A. Kuznetsov. IP Command Reference.

Institute for Nuclear Research, Moscow.

ftp://ftp.inr.ac.ru/ip-routing/iproute2.current.

tar.gz, 1999.

[14] D.T. McWherter, J. Sevy, and W.C. Regli. Build-

ing an IP Network Quality-of-Service Testbed.

IEEE Internet Computing, 4(4):65{73, August

2000.

[15] QBone Website, May 2001. http://qbone.inter-

net2.edu/.

[16] E. Rosen, A. Viswanathan, and R. Callon. Mul-

tiprotocol Label Switching Architecture (RFC

3031), January 2001.

[17] X. Xiao and L.M. Ni. Internet QoS: A Big Pic-

ture. IEEE Network, 13(2):8{18, 1999.

[18] L. Zhang, S. Deering, D. Estrin, S. Shenker, and

D. Zappala. RSVP: A New Resource ReSerVa-

tion Protocol. IEEE Network, 5:8{18, September

1993.

